Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

http://sam.nitk.ac.in/

sam@nitk.edu.in

MA110 - Engineering Mathematics-1 Problem Sheet - 10

Triple Integrals in Rectangular, Cylindrical and Spherical Coordinates

1. Using triple integrals in Cartesian Coordinates, find the volume of the sphere

$$x^2 + y^2 + (z - 4)^2 = 4.$$

- 2. Find the volume of the wedge cut from the cylinder $x^2 + y^2 = 1$ by the planes z = -y and z = 0.
- 3. Find the volume of the region bounded in back by the plane x = 0, on the front and sides by the parabolic cylinder $x = 1 y^2$, on the top by the paraboloid $z = x^2 + y^2$, and on the bottom by the *xy*-plane.
- 4. Find the volume of the solid enclosed by $z = x^2 + y^2$ and z = 9 using triple integrals in Cartesian coordinates.
- 5. Integrate $\sqrt{x^2 + y^2 + z^2} e^{-(x^2+y^2+z^2)}$ over the region bounded by the spheres $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = a^2$, a > b > 0. Write the integral in all three co-ordinate systems and evaluate the volume using the simplest one.
- 6. Find the volume of the region obtained by intersecting the ellipsoid $x^2 + 2y^2 + 2z^2 \le 10$ and the cylinder $y^2 + z^2 \le 1$.
- 7. Obtain the volume of the region enclosed by the cones $z = \sqrt{x^2 + y^2}$ and $z = 1 2\sqrt{x^2 + y^2}$.
- 8. Write the triple integral to find the volume of a cuboid of dimension *a* in both cylindrical and spherical coordinates.
- 9. Find the volume of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 5$ and below by the paraboloid $x^2 + y^2 = 4z$. Write the integral in both cylindrical and spherical coordinates. (*Ans*: $\frac{2\pi(5^{3/2}-4)}{3}$)
- 10. Using triple integral in spherical coordinates in the order $d\rho d\phi d\theta$, find the volume of the cylinder $x^2 + y^2 = 1$ between the planes z = 1 and z = 2. (*Ans:* π)
- 11. Using triple integral in cylindrical coordinates in the order $dzdrd\theta$, find the volume of the sphere $x^2 + y^2 + z^2 = 3$ between the planes $z = \frac{\sqrt{3}}{2}$, $z = -\frac{\sqrt{3}}{2}$.
- 12. Find the volume of the solid enclosed by the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2. (*Ans*: $7\pi/3$)
- 13. Find the volume of the solid inside both the spheres $\rho = 2\sqrt{2}\cos\phi$ and $\rho = 2$. (*Ans*: $\frac{2(8-3\sqrt{2})\pi}{3}$)

- 14. Write the triple integral in cylindrical coordinates to evaluate the volume of the solid in first octant bounded above by the paraboloid $z = 4 x^2 y^2$ and aterally by the cylinder $x^2 + y^2 = 3x$ using following order of integrations and evaluate the: (a) $dzdrd\theta$, (b) $d\theta dzdr$, (c) $drdzd\theta$. (*Ans*: $\frac{5\pi}{4}$)
- Write a triple integral representing the volume of the region between spheres of radius 1 and 2, both centred at the origin. Include limits of integration but do not evaluate. Use: (a) Spherical coordinates. (b) Cylindrical coordinates.
- 16. A homogeneous solid sphere of radius *a* is centred at the origin. For a section bounded by $\theta = -\alpha$ and $\theta = \alpha$, find the average distance from the *z* axis. (*Ans*: $\frac{3\pi}{16}$)
- 17. Consider the integral

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz \, dy \, dx$$

Rewrite the above integral as an equivalent iterated integral in the five other possible orders.

- 18. Find the volume of the wedge cut from the cylinder $x^2 + y^2 = 1$ by the planes z = -y and z = 0.
- 19. Find the volume of the region bounded in back by the plane x = 0, on the front and sides by the parabolic cylinder $x = 1 y^2$, on the top by the paraboloid $z = x^2 + y^2$, and on the bottom by the *xy*-plane.
- 20. Let *D* be the region bounded below by the plane z = 0, above by the sphere $x^2 + y^2 + z^2 = 4$ and on the sides by the cylinder $x^2 + y^2 = 1$. Set up the triple integrals in cylindrical coordinates that give the volume of *D* using the following orders of integration: (i) $dz dr d\theta$, (ii) $dr dz d\theta$ and (iii) $d\theta dz dr$.
- 21. Let *D* be the region in the last exercise. Set up the triple integrals in spherical coordinates that give the volume of D using the following orders of integration.
 (i) *dρ dφ dθ*, (ii) *dφ dφ dθ*.
- 22. Find the average value of the function $f(\rho, \phi, \theta) = \rho \cos \phi$ over the solid ball $\rho \le 1, 0 \le \phi \le \frac{\pi}{2}$.
