Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

MA110 - Engineering Mathematics-1
 Problem Sheet - 10

Triple Integrals in Rectangular, Cylindrical and Spherical Coordinates

1. Using triple integrals in Cartesian Coordinates, find the volume of the sphere

$$
x^{2}+y^{2}+(z-4)^{2}=4 .
$$

2. Find the volume of the wedge cut from the cylinder $x^{2}+y^{2}=1$ by the planes $z=-y$ and $z=0$.
3. Find the volume of the region bounded in back by the plane $x=0$, on the front and sides by the parabolic cylinder $x=1-y^{2}$, on the top by the paraboloid $z=x^{2}+y^{2}$, and on the bottom by the $x y$-plane.
4. Find the volume of the solid enclosed by $z=x^{2}+y^{2}$ and $z=9$ using triple integrals in Cartesian coordinates.
5. Integrate $\sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)}$ over the region bounded by the spheres $x^{2}+y^{2}+z^{2}=$ $a^{2}, x^{2}+y^{2}+z^{2}=a^{2}, a>b>0$. Write the integral in all three co-ordinate systems and evaluate the volume using the simplest one.
6. Find the volume of the region obtained by intersecting the ellipsoid $x^{2}+2 y^{2}+2 z^{2} \leq 10$ and the cylinder $y^{2}+z^{2} \leq 1$.
7. Obtain the volume of the region enclosed by the cones $z=\sqrt{x^{2}+y^{2}}$ and $z=1-2 \sqrt{x^{2}+y^{2}}$.
8. Write the triple integral to find the volume of a cuboid of dimension a in both cylindrical and spherical coordinates.
9. Find the volume of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=5$ and below by the paraboloid $x^{2}+y^{2}=4 z$. Write the integral in both cylindrical and spherical coordinates. (Ans: $\left.\frac{2 \pi\left(5^{3 / 2}-4\right)}{3}\right)$
10. Using triple integral in spherical coordinates in the order $d \rho d \phi d \theta$, find the volume of the cylinder $x^{2}+y^{2}=1$ between the planes $z=1$ and $z=2$. (Ans: π)
11. Using triple integral in cylindrical coordinates in the order $d z d r d \theta$, find the volume of the sphere $x^{2}+y^{2}+z^{2}=3$ between the planes $z=\frac{\sqrt{3}}{2}, z=-\frac{\sqrt{3}}{2}$.
12. Find the volume of the solid enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$. (Ans: $7 \pi / 3$)
13. Find the volume of the solid inside both the spheres $\rho=2 \sqrt{2} \cos \phi$ and $\rho=2$. (Ans: $\left.\frac{2(8-3 \sqrt{2}) \pi}{3}\right)$
14. Write the triple integral in cylindrical coordinates to evaluate the volume of the solid in first octant bounded above by the paraboloid $z=4-x^{2}-y^{2}$ and aterally by the cylinder $x^{2}+y^{2}=$ $3 x$ using following order of integrations and evaluate the: (a) $d z d r d \theta$, (b) $d \theta d z d r$, (c) $d r d z d \theta$. (Ans: $\frac{5 \pi}{4}$)
15. Write a triple integral representing the volume of the region between spheres of radius 1 and 2, both centred at the origin. Include limits of integration but do not evaluate. Use: (a) Spherical coordinates. (b) Cylindrical coordinates.
16. A homogeneous solid sphere of radius a is centred at the origin. For a section bounded by $\theta=-\alpha$ and $\theta=\alpha$, find the average distance from the z axis. (Ans: $\frac{3 \pi}{16}$)
17. Consider the integral

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} d z d y d x
$$

Rewrite the above integral as an equivalent iterated integral in the five other possible orders.
18. Find the volume of the wedge cut from the cylinder $x^{2}+y^{2}=1$ by the planes $z=-y$ and $z=0$.
19. Find the volume of the region bounded in back by the plane $x=0$, on the front and sides by the parabolic cylinder $x=1-y^{2}$, on the top by the paraboloid $z=x^{2}+y^{2}$, and on the bottom by the $x y$-plane.
20. Let D be the region bounded below by the plane $z=0$, above by the sphere $x^{2}+y^{2}+z^{2}=4$ and on the sides by the cylinder $x^{2}+y^{2}=1$. Set up the triple integrals in cylindrical coordinates that give the volume of D using the following orders of integration:
(i) $d z d r d \theta$, (ii) $d r d z d \theta$ and (iii) $d \theta d z d r$.
21. Let D be the region in the last exercise. Set up the triple integrals in spherical coordinates that give the volume of D using the following orders of integration.
(i) $d \rho d \phi d \theta$,
(ii) $d \phi d \rho d \theta$.
22. Find the average value of the function $f(\rho, \phi, \theta)=\rho \cos \phi$ over the solid ball $\rho \leq 1,0 \leq \phi \leq \frac{\pi}{2}$.

